Plasmid DNA – 7 facts about pDNA

michael-muehlegger

Michael Mühlegger

September 7, 2023

Table of contents

Show

Plasmid DNA stands as a fascinating topic in the field of molecular biology. This double-stranded nucleic acid molecule is known for its versatility as a genetic vehicle and holds numerous intriguing characteristics. From autonomous replication to its significance in pDNA manufacturing for biopharmaceutical processes, researchers and biotechnologists continue to be intrigued by plasmid DNA.

In this article, we delve into pDNA characteristics and functions, uncovering the profound impact of these DNA fragments within the fascinating tapestry of life.

Fact 1: Plasmids – not the sole DNA in bacteria

In bacterial genetics, plasmid DNA is recognized as a key factor, however, it shares the stage with another crucial player: chromosomal DNA. Bacterial cells, such as E. coli, possess a genomic landscape comprising both plasmid and chromosomal DNA. These two genetic components possess unique characteristics and roles that intricately shape bacterial life.1

Chromosomal DNA serves as the cornerstone of a bacterium's genetic makeup. It contains the core genetic information essential for cellular functions, growth, and reproduction. The chromosomal DNA in bacterial cells is linear and organized into a single, continuous molecule, encompassing a broad array of genes responsible for a bacterium's physiological traits.

In contrast, bacterial plasmid DNA is an auxiliary genetic element within bacterial cells. Unlike chromosomal DNA, plasmids are small, circular DNA molecules that exist independently from the chromosomal genome. They often carry genes that confer specific advantageous traits, such as the ability to metabolize unique substances. Plasmids can be shared among bacterial cells through processes like conjugation, enabling the spread of beneficial traits within a bacterial community.1 

Fact 2: Plasmids were discovered 80 years ago

The 20th century witnessed a watershed moment in the field of genetics with the discovery of plasmids. This revelation unveiled a previously unseen dimension of bacterial genetics, revolutionizing our comprehension of genetic diversity and information transfer within microorganisms.

The story of plasmids' discovery is interwoven with groundbreaking experiments that unraveled their existence. It wasn't until the mid-20th century that researchers began to decipher the intricate genetic architecture of bacterial cells. The pioneering work of scientists like Joshua Lederberg illuminated the presence of extrachromosomal elements, distinct from the primary chromosomal DNA.

Plasmids, as these newfound genetic entities came to be known, provided opportunities for investigating the adaptable realm of horizontal gene transfer. This pertains to the capacity for bacteria to exchange genetic material beyond the confines of reproduction. This discovery upended the traditional view of genetics as solely a vertical process, where genes are passed from parent to offspring.

The significance of plasmid discovery transcended the laboratory. It laid a foundation for genetic engineering, enabling scientists to manipulate and engineer these small, circular pieces of DNA. This pivotal breakthrough spurred advancements in biotechnology, medicine, and agriculture. Notably, the emergence of recombinant DNA technology and its application in gene therapy is intensely linked to the revelation of plasmids.

Fact 3: Plasmid DNA replicates independently

Plasmid DNA exhibits a unique ability: autonomous replication. Unlike chromosomal DNA, plasmid DNA can self-duplicate due to its distinct origin of replication.

This self-replicating nature grants plasmids autonomy in propagating their genetic information, setting them apart in the realm of cellular replication.2 

Plasmid DNA – 7 facts about pDNA

Fact 4: There are 5 types of plasmid DNA with distinct functions

The world of plasmid DNA contains a variety of diversity, with specific types shaping the genetic landscape of bacterial communities. These five plasmid categories possess unique attributes that determine the functions of pDNA.

  1. Resistance (R) Plasmids: Among the most renowned, R plasmids bear genes encoding resistance to antibiotics. This genetic armor equips bacteria with the power to withstand antimicrobial agents, presenting challenges in clinical settings.
  2. Fertility (F) Plasmids: F plasmids coordinate bacterial conjugation, a process similar to mating. By aiding the gene transfer between bacterial cells, they promote genetic diversity and swift adaptation to changing environments.
  3. Col Plasmids: Often observed in Escherichia coli, plasmids in this bacterium secrete colicins – toxins that specifically target closely related bacteria. This advantageous trait supports niche establishment and resource acquisition.
  4. Virulence Plasmids: Crucial to pathogenic bacteria, virulence plasmids contain genes that enable these microbes to colonize hosts and cause disease. This indicates the complex interplay between bacteria and their host organisms.
  5. Degradative Plasmids: Degradative plasmids carry genes that enable bacteria to metabolize unique substances found in their environment, allowing them to utilize a variety of energy sources. This showcases the remarkable adaptability of bacterial communities.

Fact 5: Plasmid DNA can be recombinantly produced

Plasmid DNA's flexibility extends to recombinant production through sophisticated genetic engineering techniques. Desired DNA sequences of interest can be cloned into plasmids utilizing restriction enzymes and PCR amplification, allowing for precise customization.

Plasmids can be transformed as versatile tools by encoding specific traits required for DNA vaccines. This manipulation takes place in vitro, outside of living organisms, enabling controlled experimentation. Emerging technologies, such as CRISPR, continue to advance plasmid modification, while conjugation facilitates plasmid transfer between bacteria. This purposeful utilization of plasmids in recombinant production highlights their fundamental role in modern genetic research, biotechnology and medicine.

Read more: Plasmid DNA manufacturing companies – market overview

Fact 6: Plasmids can function as vectors

The function of plasmids goes beyond serving as vectors in bacterial cells, aiding in the modification and transfer of genetic information. This skill is used in diverse areas, including genetic research and medical advances like mRNA (messenger RNA) production.

Plasmids can be modified to contain foreign DNA segments – genes of interest –, that can then be replicated within the host cells. This technique, also known as cloning, enables scientists to harness the power of bacterial replication machinery to generate multiple copies of a particular DNA sequence. The inserted gene can also be equipped with regulatory elements, such as promoters, thereby guaranteeing regulated gene expression.

In the laboratory, plasmids serve as essential tools for studying gene function and regulation. Researchers can introduce plasmid constructs into cells and observe their effects. Moreover, plasmids find relevance in vivo, demonstrating their potential to influence gene expression and cell behavior within living organisms.

Plasmids shine brightly in the field of gene therapy, as they allow for the delivery of therapeutic genes into target cells, offering potential cures for genetic disorders or providing novel treatments for various diseases. Plasmids serve as vehicles for genetic healing through the process of transfection, which involves introducing foreign genetic material into cells.

RoSS.pFTU Lab Scale - in process (1 von 9)-min

Fact 7: pDNA manufacturing comes with complexities

The realm of plasmid DNA (pDNA) manufacturing presents significant challenges for pharmaceutical companies aiming to harness its potential. While pDNA holds immense promise for gene therapy, DNA vaccines, and other applications, its production involves challenges.

Purification methods, like electrophoresis and alkaline lysis, require careful calibration to ensure the yield of high-quality, supercoiled pDNA. The specter of endotoxin contamination adds another layer of complexity, necessitating stringent purification processes. And scaling up production from lab-scale to commercial quantities demands meticulous optimization.

Successfully navigating these hurdles demands a comprehensive understanding of plasmid preparation, manufacturing techniques, and regulatory compliance, ultimately dictating the success of pDNA-based biopharmaceutical endeavors.

Single Use Support is ready to face these challenges together with biopharmaceutical companies. With a dedicated product line-up for pDNA manufacturing in the field of fluid and cold chain management, the production of DNA plasmids can increase in safety, efficiency and scalability.

Based on optimization of pDNA manufacturing with single-use technologies, processing steps like fluid management (including aliquotation and homogenization) can be streamlined, eliminating the need for cost- and resource-intensive cleaning processes at the manufacturing site. This also reduces water and energy consumption, thus the environmental impact. Furthermore, controlled-rate freeze-thaw platforms open doors to a customized freezing process of different volumes of pDNA. While single-use bioprocess containers are covered and protected by robust secondary packagings, both plate-based freeze-thaw platforms and liquid-nitrogen-based cryogenic freezers enable cooling of pDNA for safe cryopreservation.

The high level of automatization that comes with Single Use Support’s platform systems minimize the need for human intervention and therefore the risk of human error, while operating costs can be lowered. This is how Single Use Support provides innovative solutions that help pDNA manufacturers in bringing their processes to the next level.

FAQs

What Is the role of plasmid DNA in bacterial cells?

Plasmid DNA coexists with chromosomal DNA within bacterial cells. While chromosomal DNA carries essential genetic information, plasmids offer supplementary functions. They can harbor genes for antibiotic resistance, virulence factors, and other adaptive traits. Plasmids are also vehicles for horizontal gene transfer, facilitating genetic diversity and adaptation among bacteria.

How are plasmids utilized as vectors in gene therapy?

Plasmids serve as versatile vectors in gene therapy, allowing the delivery of therapeutic genes into target cells. By engineering plasmids to carry a specific gene of interest, scientists can harness bacterial replication machinery for the generation of therapeutic proteins. Therefore, plasmid vectors hold promise for treating genetic disorders and developing novel medical treatments.

Do eukaryotic cells harbor plasmid DNA?

Eukaryotic cells, unlike bacterial cells, typically do not harbor plasmid DNA naturally. However, plasmids can be artificially introduced into eukaryotes for research purposes or gene therapy applications. Expression vectors derived from plasmids are designed to drive gene expression within eukaryotic systems, such as mammalian cells.

Are plasmids employed in clinical trials?

Yes, plasmids play a crucial role in preclinical and clinical trials, especially in gene therapy and DNA vaccine development. Plasmid-based gene therapies are being tested for various genetic disorders. DNA vaccines, which use plasmids to deliver antigens and trigger immune responses, are also under investigation in clinical trials.

michael-muehlegger

Michael Mühlegger

Senior Director Marketing & Inside Sales

Michael Mühlegger is the Head of Marketing and Inside Sales at Single Use Support. He has 10+ years experience in the fields of marketing, inside sales, communications, content management, and creative production. With a keen understanding of market dynamics and customer behavior, Michael has successfully implemented innovative marketing strategies to drive business growth and enhance brand visibility.

He has a strong background in content management, with a focus on life sciences and biopharma trends, and is adept at creating compelling content across multiple platforms to engage audiences and effectively communicate brand messages.

 

More from Michael Mühlegger

mRNA & LNPs

Oligonucleotide manufacturing – challenges & solutions

Oligonucleotide manufacturing. Optimizing fluid management, freezing & cold storage | Purification Oligonucleotides

michael-muehlegger

Michael Mühlegger

October 25, 2024

mRNA & LNPs

Oligonucleotides simply explained

What are oligonucleotides? Nucleic acid types | RNA oligonucleotides | DNA oligos | Types of Oligonucleotides

michael-muehlegger

Michael Mühlegger

October 25, 2024

Read more about Cell & Gene Therapy

Cell & Gene Therapy

DMSO: Freezing Cells

Freezing cells is a process that requires more than simply placing them in a freezer with dimethyl sulfoxide (DMSO). It is a precise and meticulous process, where precision and expertise are essential. The goal is to achieve high cell viability and therefore high yield for cell-based therapies or cell banking.

Khalil Essani - Single Use Support

Khalil Essani

October 11, 2024

Cell & Gene Therapy

Study: Optimizing Cell Viability During CHO Cell Freezing

In a recent study, freezing protocols were tested with the RoSS.LN2F controlled liquid nitrogen freezer to find the optimal freezing rate for CHO-K1 cells in order to achieve maximum cell viability. 

Alexander Fuchs | Single Use Support

Alexander Fuchs

February 16, 2024

Cell & Gene Therapy

Regulations for Cryoprotectants in ATMP Cryopreservation

Adequate quality control samples retained before cell therapy treatment are a crucial component of effective regulation and need to represent the conditions and history in the cryobag. A deep dive into GMP Annex 1 on ATMP Cryopreservation.

Khalil Essani - Single Use Support

Khalil Essani

February 7, 2024

Cell & Gene Therapy

Stressing Cells: The Role of Cryoprotectants in ATMP Cryopreservation

The objective of an optimal cryopreservation strategy is to deactivate (put on hold) degenerative cellular pathways and preserve proliferative potential by reducing the temperature below –130°C. To reduce the effects of ice crystal and osmotic injuries, cryopreservation protocols usually incorporate cryoprotective agents (CPAs).

Khalil Essani - Single Use Support

Khalil Essani

February 8, 2024