Viral vector manufacturing: Production methods & future advances

Khalil Essani - Single Use Support

Khalil Essani

September 20, 2023

Table of contents

Show

Viral vector manufacturing is one of the most innovative advancements in gene therapy, with the potential to transform medical treatments and improve people’s lives. However, scalability is a significant challenge that slows this field’s progress. Even though the potential of viral vector-based therapies to revolutionize healthcare is unquestionable, the obstacle remains in manufacturing viral vectors at a scale required for widespread use in clinical settings.

This article will focus on various ways to make more viral vectors. Scaling up production is a big issue that affects every part of the process, including the cell lines used to host the virus, cleaning the vectors, and following regulations.

Definition – what is viral vector manufacturing?

Viral vector manufacturing is the process necessary for creating the crucial carriers that transport therapeutic genes. Viral vectors are widely used in fields like gene therapy (alongside non-viral vectors like plasmids as an alternative), making their optimized manufacturing essential in the biopharma industry.

At its core, viral vector manufacturing revolves around selecting suitable producer cell lines (frequently mammalian cells), optimizing the production process, and adhering to strict regulatory standards as well as current Good Manufacturing Practices (cGMP). These steps are vital to guarantee the highest levels of safety and efficacy in the final gene therapy products.

Scalability as major challenge in viral vector production

Scalability is a major challenge in viral vector production. Regardless of what stage of the product’s lifecycle it is at, it impacts the efficiency of production processes and the progress of preclinical research. The ability to seamlessly scale up and scale out the production of viral vectors is critical for meeting the increasing demand for gene therapy and cell therapy products, as well as for conducting rigorous clinical studies.

Traditional methods of viral vector production often face inherent limitations when it comes to scalability. Bringing the production processes from laboratory-scale to large-scale commercial production poses substantial challenges. These challenges can include maintaining product quality, optimizing processes, and ensuring cost-effectiveness. The constraints of traditional methods can impede the timely progression of preclinical studies, delaying advancements in gene therapy.

In recent years, there have been exciting developments in addressing scalability issues in viral vector production. Innovative approaches and technologies have emerged to break down the barriers that have traditionally limited scalability. These advancements are not only enhancing production efficiency, but also fostering high-quality and cost-effective viral vector manufacturing.

Viral vector production – scalability

Cell lines in viral vector manufacturing

Host cell lines play a crucial role in manufacturing viral vector, affecting production efficiency and product quality. These cells act as factories where viral vectors are produced, making the selection of the right host cell line a critical decision in the manufacturing process.

Usually, only a few well-established host cell lines have been the preferred option in viral vector manufacturing. One of these is HEK293 (Human Embryonic Kidney 293 cells), known for being easy to grow and producing ample vectors. These cell lines have demonstrated their effectiveness in producing different types of viral vectors, such as adenovirus and lentivirus. But they do have downsides. These traditional cell lines get viral infections easily, need specific culture conditions, and may be hard to scale.

Lately, scientists have started to examine the potential of insect cell lines, such as Sf9 packaging cell lines in AAV production with the help of baculovirus. These novel host cell cultures offer advantages like increased scalability and cost-effectiveness, although further analysis is necessary to validate potential drawbacks of these platforms.1 2 

Transfection methods – from transient to stable?

Transfection methods play an important role in viral vector manufacturing, affecting their efficiency and properties. Two main techniques, transient and stable transfection, dictate production strategies.

Transient transfection historically briefly introduces vector genes into host cells, yielding rapid vector production suitable for research. However, it may face challenges at large scales.

In contrast, stable transfection integrates vector genes into the host cell genome, allowing sustained vector production. This method is favored for high-yield, long-term manufacturing, particularly in clinical applications. For instance, lentiviral vectors, prized for their broad cell transduction capabilities, often employ stable transfection of cell culture. Here, researchers often prefer cell cultures grown in suspension, which bring further advances in terms of scalability compared to traditional adherent cell culture. In GMP manufacturing of viral vectors, serum-free culture media is chosen to further enhance the quality profile of viral vectors.

Read more: AAV packaging3 

Purification strategies

Purification and characterization strategies are necessary downstream processes to ensure the quality and safety of the final product.

Purification involves the use of techniques such as chromatography and filtration. Chromatography separates different components of the vector based on their size, charge, and affinity, while filtration is employed to remove impurities, thereby enhancing the purity of the viral vector.

Characterization is an essential step in assessing the quality of the viral vector. It includes a wide range of assays and analyses, such as titer analysis and sequencing, to verify the vector's identity and the integrity of its genome. Additionally, in-process testing is carried out to maintain consistent vector quality at various stages of production.4

Especially the separation of empty virus capsids from those containing modified genes is important and requires elaborate purification methods. In recent years, size-based purification methods have often been preferred, such as ultrafiltration, two-phase extraction systems and affinity chromatography, which is a promising approach, although further improvements are still necessary.4 5 6 

Clone quality evidence, GMP, and regulatory demands

In viral vector production, the convergence of quality evidence, adherence to Good Manufacturing Practices (GMP), and the stringent regulatory demands, e.g. by the FDA, is essential for clinical trials, commercial manufacturing, and the eventual in vivo applications of viral vectors.

Generating quality evidence is a fundamental requirement when transitioning from research and development to clinical trials and commercial manufacturing. This evidence serves as a robust assurance that the manufactured viral vectors meet the exacting standards set forth by regulatory bodies, using one single clone in the working cell bank.

Good Manufacturing Practices (GMP) are substantial in pharmaceutical and biologics production. They mandate stringent adherence to quality standards throughout the manufacturing process, encompassing various facets, including facility cleanliness, staff training, and meticulous documentation practices. However, this can become more complex when scaling production, which is why an increasing level of automatization is required to streamline processes that had previously been carried out manually.7 

Process optimization with single-use technologies

The integration of single-use technologies has become indispensable in both upstream and downstream processing – be it for biopharma companies or entrusted CDMOs. Disposable components have shaped the way we produce viral vectors, offering enhanced efficiency, flexibility, and cost-effectiveness.

In the upstream processing phase, single-use bioreactors and fermenters have gained prominence. They allow for the cultivation of host cells and vector production without the need for time-consuming cleaning and validation between batches. This not only accelerates production timelines but also reduces the risk of contamination. Moreover, single-use bioreactors offer scalability, enabling seamless transitions from small-scale research to large-scale commercial manufacturing.

Downstream processing benefits from disposable chromatography columns and filtration systems. These simplify vector purification while minimizing the use of precious reagents. The result is a streamlined purification process that translates into cost savings and a reduced environmental footprint.

Even in formulation and quality control stages, single-use technologies come into play. Single-use bioprocess containers and bags are employed for media and buffer preparation and product storage, enhancing process flexibility.

RoSS.FILL CGT_Product photo (5 von 26)

Expertise with single-use technology in viral vector manufacturing

With a high level of expertise in the implementation of single-use technologies in bioprocessing, Single Use Support provides innovative and scalable solutions to streamline viral vector manufacturing.

The process solution provider’s fluid management platform is fully automated, capable of aliquoting large amounts of liquids in a safe and precise, cGMP-compliant manner. It helps reduce product loss when filling viral vectors into single-use bioprocessing containers in different sizes, where the viral vectors can subsequently be frozen using the innovative plate freezing technique of RoSS.pFTU. This freeze/thaw platform is able to freeze biologics down to -80 °C at unprecedented fast and controlled cooling rates, which helps to reduce viability limitations such as with the occurrence of cryoconcentration.

In order to further maintain product quality and effectiveness, viral vectors are then stored and shipped at ultra-low temperatures. Here, RoSS.FRDG comes into play: The ULT freezer fills the gap between small lab-scale freezers and spacious cold rooms, initially often too large. All vendor-agnostic solutions from Single Use Support are easily scalable and therefore another puzzle-piece in pushing  progress in viral vector manufacturing.

Navigating 5 Overlooked Challenges in Viral Vector Manufacturing

Guide about Viral Vector Manufacturing | Scalability in Cell Line Development | Accuracy in Bag Aliquoting | Viscosity and Homogeneity in Liquid Transfer | Product Viability after Freezing & Thawing | Bag Breakages in viral vector storage and shipping

Further articles about viral vector manufacturing

Learn more about navigating these 5 overlooked challenges in Viral Vector Manufacturing with regards to fluid management challenges:

  • Scalability in Cell Line Development 
  • Accuracy in Bag Aliquoting
  • Viscosity and Homogeneity in Liquid Transfer
  • Product Viability after Freezing & Thawing
  • Bag Breakages in viral vector storage and shipping
Safe handling AAVs

Safe handling & Storage of Viral Vectors

Viral vectors like Adeno-associated viruses (AAVs) are popular vectors for gene therapy and vaccines. And yet, there is product loss due to leakages of primary packagings or other mishandling of fluids. In order to deliver high-quality and viable products efficiently, safe handling experience a growing interest.

Controlled Plate-Freezer_1

Freezing & thawing viral vectors: Best practices

Proper handling of viral vectors during storage, freezing, and thawing is crucial to maintaining their integrity and efficacy. In this article, we will explore best practices for preserving viral vectors, ensuring their stability, and maximizing their potential for various applications.

RoSS.PADL Homogenizing Solution for Aliquot-to-Aliquot consistency

Aliquotation & homogenization of viral vectors

In this article, we uncover the significance of a professional aliquotation process, the challenges entailed in filling viral vectors like AAVs, and the innovative solutions supporting to master those challenges.

viral vectors gene therapy 3 aav

Challenges in viral vector production & innovative solutions

The challenges in viral vector production are many. The manufacturing process is complex and often demands more flexibility than traditional techniques and devices can offer. Read more!

  1. Viral vector platforms within the gene therapy landscape, http://dx.doi.org/10.1038/s41392-021-00487-6, Published 2021-02-08
  2. The Next Generation of Cell Factories for Viral Vector Production, https://www.genengnews.com/insights/the-next-generation-of-cell-factories-for-viral-vector-production/, Published
  3. Viral vector platforms within the gene therapy landscape, http://dx.doi.org/10.1038/s41392-021-00487-6, Published 2021-02-08
  4. Challenges in downstream purification of gene therapy viral vectors, http://dx.doi.org/10.1016/j.coche.2021.100780, Published 2021-12-28
  5. Viral Vector Characterization: A Look at Analytical Tools, https://cellculturedish.com/viral-vector-characterization-analytical-tools/, Published 2018
  6. Challenges in Vector Purification for Gene Therapy, https://www.biopharminternational.com/view/challenges-vector-purification-gene-therapy, Published
  7. The Next Generation of Cell Factories for Viral Vector Production, https://www.genengnews.com/insights/the-next-generation-of-cell-factories-for-viral-vector-production/, Published 2021
Khalil Essani - Single Use Support

Khalil Essani

Product Line Management

Khalil Essani is Product Line Manager at Single Use Support. Scientist through and through he develops single-use technologies to further advance the biopharmaceutical industry during its shift towards single-use systems. Based on his extensive expertise and graduate in bioprocessing and biotechnology Khalil authors several publications. At Single Use Support he focuses on sterile products in the field of fluid and cold chain management.

More from Khalil Essani

End-to-end Solution

Protein production and optimization strategies

Protein production is a crucial process that which a large variety of pharmaceutical products rely on. Therefore, we will discuss this procedure in this article, along with possibilities to improve it.


 

Khalil Essani - Single Use Support

Khalil Essani

April 9, 2024

End-to-end Solution

Protein stability – all you need to know

Protein stability is crucial to be maintained along the manufacturing process of protein-based products. In this article, we will discover what influences protein stability, along with methods to assess and increase it.

Khalil Essani - Single Use Support

Khalil Essani

April 9, 2024

Read more about Viral Vectors

Viral Vectors

AAV packaging services: Market overview

Packaging AAVs is crucial as a method to encapsulate a gene of interest within a viral vector. Therefore, we will discuss related methods and services in this article.

micheal-eder

Michael Eder

September 21, 2023

Viral Vectors

Challenges in viral vector production & innovative solutions

The challenges in viral vector production are many. The manufacturing process is complex and often demands more flexibility than traditional techniques and devices can offer. Read more!

BRMO

Brian Moloney

October 21, 2023

Viral Vectors

Viral Vector Vaccine - 7 Facts You Might Not Know

This article will discuss several aspects of viral vector vaccines: We will uncover seven intriguing facts that shed light on this technology: From the ability to mimic infections to the challenges of storage and the diverse applications and more. 

BRMO

Brian Moloney

September 21, 2023

Viral Vectors

Non-viral vectors vs. viral vectors in gene therapy

When designing gene therapies, the choice between non-viral and viral vectors plays an important role in determining the success and safety of therapeutic interventions. Non-viral vectors offer unique advantages, while viral vectors have their own set of strengths and weaknesses. In this blog post, we will explore the types, benefits, and limitations of both non-viral and viral vectors in gene therapy.

Khalil Essani - Single Use Support

Khalil Essani

September 21, 2023